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Transformation of a three-phase system n
with symmetrical components

The study of a three-phase system is not so difficult if the
voltages and currents constitute a balanced and symmetrical
system. In this case, the study of a three-phase system can be
reduced to the study of one phase.

Recall:

Definition: balanced system - in a balanced system, the sum of
the three phasors of currents or voltages is zero.

Definition: symmetrical system — in a symmetrical system, the
angles between subsequent phasors of voltages or currents are
equal.



Transformation of a three-phase system n
with symmetrical components

The study of a three-phase system is not so difficult if the
voltages and currents constitute a balanced and symmetrical
system. In this case, the study of a three-phase system can be
reduced to the study of one phase.

If the three-phase system under study is not balanced and/or
asymmetrical, then all three coupled phases must be studied.
This involves solving systems of equations with complex variables.
The transformation with symmetrical components reduces the
computational difficulty in the case of an asymmetrical and/or
unbalanced system - decoupling the equations.



Transformation of a three-phase system H
with symmetrical components

Symmetrical components allow for simplification of three-
phase system study, and, in general, with n phases, which
are asymmetrical and unbalanced in voltages and
currents. In the following, we consider only three-phase
systems.

Definition: three-phase system - Triplet of complex numbers
representing an electrical system (i.e., simple or compound
voltages, phase currents, impedances).

We consider three unequal generic complex numbers

V.V.V.T» representing three quantities in a three-phase
system.



Transformation of a three-phase system n
with symmetrical components
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We define the vector _Vabc] e»” where »° represents a

three-dimensional vector space bounded by the complex
number field » .
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From now on, references to a three-phase system and the
preceding vector are equivalent.

We will show how to break down a three-phase system into
its three symmetrical, balanced three-phase systems,
called sequences.



Transformation of a three-phase system
with symmetrical components

Hypotheses:

Generic sinusoidal network in steady-state with
unbalanced and asymmetrical voltages and currents;
Network with linear components;

Common ground for all voltage levels (there is no system
with isolated neutral).

In general, each network element can be modeled by its
impedance matrix:
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Transformation of a three-phase system n
with symmetrical components

In the case of single-port components (i.e. motors,
generators, loads, etc.), the voltages E ,E,, E. are those
applied to the terminals of the component itself and to
earth, and the currents [ ,1,,1 are phase currents.
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Transformation of a three-phase system n

with symmetrical components

In the case of elements with two ports (i.e. lines,
fransformers, etc.) E_E,, E. are the differences between

the input and output voltages, and the currents I ,1,,1 are

phase currents.
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Transformation of a three-phase system m
with symmetrical components

Observation: the relationship on the previous slide implies
mutual coupling between phases, and therefore the
presence of three generic voltages leads to the flow of
three generic currents. This means that network studies
cannot be carried out using single-phase equivalent
circuits.



Transformation of a three-phase system n

with symmetrical components

Additional assumption: network elements are, in general,
made up of impedance matrices characterized by the

following two circulant symmetries:

/ = 7 = — Z — _
_aa _bb _cc - B B B |:Zabc:| =
Zab = ac = bc :Zba :an :Zcb :M

and, for rotating machines:
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Z.=7. =7 =M Zy )=

Z =2 =7,=K

< =<1 NI

=1 NN

=< NI

=N

NI ==

NI =X

Observation: in what follows, we derive the sequence method for the generic
case of circulant symmetric matrices of network components, so the latter.



Transformation of a three-phase system n
with symmetrical components

The procedure for decoupling the link between voltages
and currents involves calculating the eigenvalues and
eigenvectors of the matrix | Z,,, |

Z-1 M M
M zZ-1I M |=0

M M  Z-1

Using Sarrus' method, for example, to calculate the

determinant of the previous equation, we get the following
characteristic polynomiail:

(Z- 1) +201° -301%(Z - 1) =0
which has a single root (1,) and another double root (1, ;):
1=Z+2i:0,=1,=7-1




Transformation of a three-phase system m
with symmetrical components

The eigenvectors of the root 1, are:

- Z-(Z+24) i 7
M Z-(Z+2d) W x, |=0
7 M Z-(Z+2m) | %5
Which is equivalent to:
REnEs ko

Necessary . -, =y =k el '
and sufficient © ¢ °
condition = L |

Eigenvector of the root 4,
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Transformation of a three-phase system m
with symmetrical components

The eigenvectors of the roots 4, and /; are:

Z - (Z - M) M M X,
M Z - (Z - 1\7[) M x, [=0
M M Z—(Z—M) RN
Which is equivalent to:
111 ™ Necessary
1111 x |50 andsufficient x,+x,+x,=0
111 x condition =




Transformation of a three-phase system m
with symmetrical components

In the case of a circulant impedance matrix, we have:
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The characteristic polynomial is:

(Z- 1) +i°+K*-30K(Z - 1)=0



Transformation of a three-phase system n
with symmetrical components

The roots are:

I =7Z+K+M
1( \ J3
l :Et-ﬁg%hg‘g%z —IZ-M+2ZJ =-j (R )R- +27
(k-1 = (-1
1( \ J3
/ :ELﬁﬁﬁ?h;?{Z(‘g;@g -zz_mzzJ = 5 (R - 1)K - i +27



Transformation of a three-phase system
with symmetrical components

The eigenvectors of the root 4, (corresponding to the case
of the circulant impedance matrix) are given by:

| Z-(Z+H+K) i % Ir -
% Z-(Z+H+K) i x, |=0
i % Z-(Z+i+K) | %




Transformation of a three-phase system m
with symmetrical components

The eigenvectors of the root 4, (corresponding to the case
of the circulant impedance matrix) are given by:

Z-[-jg(zz-z\z) K- +27] i I
% z-{-,;(zz W)-R-ii+27 i {x }o
i % Z—[—j;(E—M)—I?-MuZ}

The solution is given by:

0052’0—m+jsin2’0—m . .

) 3 3 /s Observation: the eigenvectors of a

v, | cosz'OTm+jsin2me circulant matrix of rank n are

X, oom 2om " composed of the n roots of unity given
Cos7gm s by the solution of the equation z" =1

or z1O andn 1.



Transformation of a three-phase system n
with symmetrical components

The eigenvectors of the root 1; (corresponding to the case
of the circulant impedance matrix) are given by:

NI

R -m)-

M

K—M+ZZ}

The solution is given by:
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2pm
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3 m=1
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Observation: the eigenvectors of a
circulant matrix of rank N are

composed of the N roots of unity given

by the solution of the equation z" =1
or z1O andn 1.



Transformation of a three-phase system m
with symmetrical components

Through the definition of the complex number a 10
a-= e]%p = cos[gpj + 'sin(gpj
37) 3

we obtain the common eigenvectors for symmetrical and
circulant matrices [Z, |:

BRI
1| a ||| a
1| a a’

The three vectors shown are called sequences



Transformation of a three-phase system m
with symmetrical components
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Transformation of a three-phase system m
with symmetrical components




Transformation of a three-phase system m
with symmetrical components

The matrix [T,] with eigenvectors in the columns, i.e. the
matrix with sequences | $°(2) |.[ (1) |.| $?(1) ] in the columns
has a non-zero determinant. This matrix represents a change
of basis of the vector space [1°

1 1
a’ a
a a‘

In fact, the vectors | S°(1) |.| $*(1) || (1) |are linearly
independent and form a basis for 0°.



Transformation of a three-phase system m
with symmetrical components

Observation: the previous sequence property means that
any vector of (I} i.e. any set of three complex numbers
representing a three-phase system, can be expressed as a
linear combination of the elements of this base by the

following equation:

ool 1 1 || % v,
7, =l 1 a a | 7, =[] 7,
7|11 a a | 7 V.




Transformation of a three-phase system m
with symmetrical components

Observation: therefore, for a generic element of a three-

phase system _[V_ Vb_,VJ, the homopolar, direct and inverse
components| 7,7, V. |can be determined by:

| o o
1
Wl
| o o

2

1
2
a a

1 1
1 a a
1

o

NI N SN
1l
e

o
I



Transformation of a three-phase system m
with symmetrical components
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Now we can write the equation in
compact form

1
NI NI N
N N} Q

b = b

Q
S

e |7 Zse | L ]

and the triplet of voltages and currents can be
decomposed by the matrix [T], resulting in:

T Bou J7 [ Zae )7 )L o
B, )=[7] [ Z, (7] R




Transformation of a three-phase system
with symmetrical components

if we consider that [7.]" [ Z... [7.] gives rise to a diagonal
matrix whose diagonal terms are the eigenvalues of | Z,,_ |,
we obtain for the first type of matrix:
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Therefore, the generic network element supplied by a
generic voltage system (asymmetrical and unbalanced)
and a generic current system (also asymmetrical and
unbalanced), can be decomposed into three three-phase
circuits where they act only in the homopolar, direct and
reverse sequence.
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Transformation of a three-phase system m
with symmetrical components
Each three-phase circuit

~“~ o~

can be represented by an
equivalent single-phase o= o
circuit as shown in the

figure.

The circuits in the figure are “ T

not coupled - there is no [ ;=== | — ]
electrical connection

between the sequence
circuits, so they can be
solved separately.
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Considerations for Grounding




Considerations for Grounding m

The sequence voltages and currents of a three-phase system
can be used 1o make observations about the grounding
characteristics of the system.

Definition: grounded system — a system in which the point at the
center of the phase-to-ground voltages is connected to earth
via a low or zero impedance.

If the impedance of the grounding system is zero (ideal
grounding), the homopolar (zero sequence) voltage is equal to
zero and the homopolar current may be non-zero.

If the system is ungrounded, the homopolar current is equal to
zero and the homopolar voltage may be non-zero.



Considerations for Grounding n

If the impedance of the grounding system is zero (ideal
grounding), the homopolar (zero sequence) voltage is equal to
zero and the homopolar current may be non-zero.

If the system is ungrounded, the homopolar current is equal to
zero and the homopolar voltage may be non-zero.
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Decoupling of an asymmetrical
three-phase impedance system




Decoupling of an asymmetrical three- E
phase impedance system
(asymmetrical line)

We examine the case of a line whose impedance matrix
does not have a circulant structure. We study a simple case,
where the line can be represented only by three different
longitudinal impedances:
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Decoupling of an asymmetrical three-
phase impedance system

(asymmetrical line)

If the matrix [T] is ollsc_) the matrix of eigenvectors of [Zabc]
with the result [T.] [ Z,,. || 7,] we should get a diagonal

matrix, and instead we get:

1 |11 Lo
LAREA A AP
1 a a | o0
1 Zaa + be + ch Za + aZbe + aZ
- é Zaa + abe + aZ Zaa + be + Zc
Z +a‘zZ +alZ.  Z +aZl +aZl

1 1
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1 a
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Apparent power invariance property n

When using the sequence decomposition of a three-phase
electrical system, the invariance of the complex power
must be taken into account, given the equivalence
demonstrated below between the original three-phase
circult and the sequence circuifts.

This property is easily demonstrated by considering the
expression of the apparent power of a three-phase circuit
fed by three simple voltages E E E which absorb three
ine currents 1 ,,1,,1,

S=EI +EI +EI
This equation can be written as the scalar product of the
foIIowing vectors:

S=[E, L J=[[n] B ] {7 [ T )= (B (2] {7 ] i



Apparent power invariance property

The product [T]t [T] is equal to

2 aZ

t 1 1 1 1 1 1
[TJ [TS*]= 1 a*® a 1 a a° |=3
1 a a 1 a

o O -
o +— O
— O O

Therefore:
§ = |:E0di :|t |:T;:|t .|:T;*:||:70*dij| = 3EWOTO* + BEd7; + BEiTi*

Since the three sequence circuits 0,d,i, are symmetrical, their
apparent powers can be written as:

-~ e

S =3l  8,=3W,1,  §=3V

Therefore, we have energetic equivalence of the three-
phase circuit and its composing sequence circuits.
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