

2024-2025 Fall Semester

Course of Power System Analysis

Study of asymmetrical three-phase circuits: the sequence decomposition

Prof. Mario Paolone

Distributed Electrical Systems Laboratory École Polytechnique Fédérale de Lausanne (Switzerland)

Outline

Transformation of a three-phase system with symmetrical components

Considerations for Grounding

Decoupling of an asymmetrical three-phase impedance system

Apparent power invariance property

The study of a three-phase system is not so difficult **if the voltages and currents constitute a balanced and symmetrical system**. In this case, the study of a three-phase system can be reduced to the study of **one phase**.

Recall:

Definition: **balanced system** – in a balanced system, the sum of the three phasors of currents or voltages is zero.

Definition: **symmetrical system** – in a symmetrical system, the angles between subsequent phasors of voltages or currents are equal.

The study of a three-phase system is not so difficult **if the voltages and currents constitute a balanced and symmetrical system**. In this case, the study of a three-phase system can be reduced to the study of **one phase**.

If the three-phase system under study is **not balanced and/or asymmetrical**, then **all three coupled phases** must be studied. This involves solving systems of equations with complex variables. The transformation with symmetrical components **reduces the computational difficulty in the case of an asymmetrical and/or unbalanced system decoupling the equations.**

Symmetrical components allow for **simplification of three-phase system study**, and, in general, with **n phases**, which are **asymmetrical** and **unbalanced** in voltages and currents. In the following, we consider *only three-phase systems*.

Definition: three-phase system - Triplet of complex numbers representing an electrical system (i.e., simple or compound voltages, phase currents, impedances).

We consider three unequal generic complex numbers $\bar{V}_a, \bar{V}_b, \bar{V}_c$ $\hat{\mathbb{I}}$ » representing three quantities in a three-phase system.

We define the vector $\left[\overline{V}_{abc}\right] \in \mathbb{R}^3$, where \mathbb{R}^3 represents a three-dimensional vector space bounded by the complex number field \mathbb{R}^3 .

$$egin{bmatrix} ar{ar{V}}_{abc} \ \end{bmatrix} = egin{bmatrix} ar{V}_a \ ar{V}_b \ ar{V}_c \end{bmatrix}$$

From now on, references to a three-phase system and the preceding vector are equivalent.

We will show how to break down a three-phase system into its three symmetrical, balanced three-phase systems, called **sequences**.

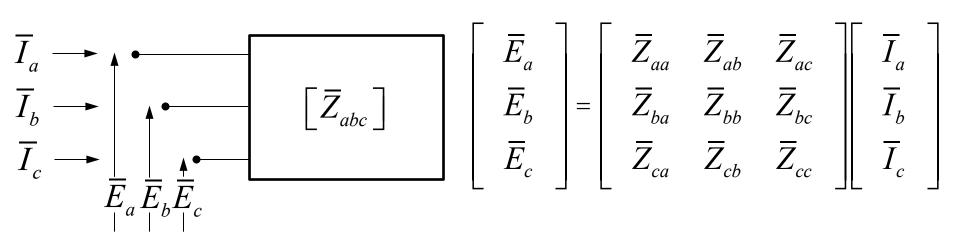
Hypotheses:

- Generic sinusoidal network in steady-state with unbalanced and asymmetrical voltages and currents;
- Network with linear components;
- Common ground for all voltage levels (there is no system with isolated neutral).

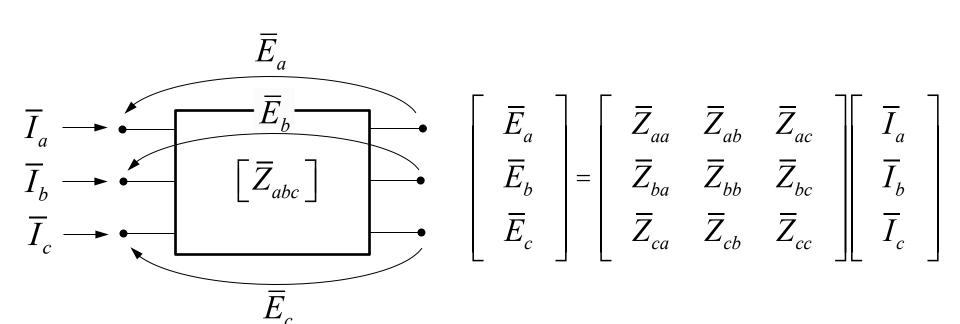
In general, each network element can be modeled by its **impedance matrix**:

$$\begin{bmatrix} \overline{E}_{a} \\ \overline{E}_{b} \\ \overline{E}_{c} \end{bmatrix} = \begin{bmatrix} \overline{Z}_{aa} & \overline{Z}_{ab} & \overline{Z}_{ac} \\ \overline{Z}_{ba} & \overline{Z}_{bb} & \overline{Z}_{bc} \\ \overline{Z}_{ca} & \overline{Z}_{cb} & \overline{Z}_{cc} \end{bmatrix} \begin{bmatrix} \overline{I}_{a} \\ \overline{I}_{b} \\ \overline{I}_{c} \end{bmatrix}$$

In the case of **single-port** components (i.e. motors, generators, loads, etc.), the voltages $\overline{E}_a, \overline{E}_b, \overline{E}_c$ are those **applied to the terminals of the component itself and to earth**, and the currents $\overline{I}_a, \overline{I}_b, \overline{I}_c$ are phase currents.



In the case of elements with **two ports** (i.e. lines, transformers, etc.) $\bar{E}_a, \bar{E}_b, \bar{E}_c$ are the differences between the input and output voltages, and the currents $\bar{I}_a, \bar{I}_b, \bar{I}_c$ are phase currents.



Observation: the relationship on the previous slide implies mutual coupling between phases, and therefore the presence of three generic voltages leads to the flow of three generic currents. This means that network studies cannot be carried out using single-phase equivalent circuits.

Additional assumption: network elements are, in general, made up of impedance matrices characterized by the following two circulant symmetries:

$$\begin{split} \overline{Z}_{aa} &= \overline{Z}_{bb} = \overline{Z}_{cc} = \overline{Z} \\ \overline{Z}_{ab} &= \overline{Z}_{ac} = \overline{Z}_{bc} = \overline{Z}_{ba} = \overline{Z}_{ca} = \overline{Z}_{cb} = \overline{M} \end{split} \qquad \begin{bmatrix} \overline{Z}_{abc} \end{bmatrix}$$

$$egin{bmatrix} ar{Z} & ar{M} & ar{M} \ ar{M} & ar{Z} & ar{M} \ ar{M} & ar{Z} & ar{M} \ ar{M} & ar{M} & ar{Z} \end{bmatrix}$$

and, for rotating machines:

$$\begin{split} \overline{Z}_{aa} &= \overline{Z}_{bb} = \overline{Z}_{cc} = \overline{Z} \\ \overline{Z}_{ab} &= \overline{Z}_{bc} = \overline{Z}_{ca} = \overline{M} \\ \overline{Z}_{ac} &= \overline{Z}_{ba} = \overline{Z}_{cb} = \overline{K} \end{split}$$

$$egin{bmatrix} ar{Z}_{abc} \end{bmatrix} = egin{bmatrix} ar{Z} & ar{M} & ar{K} \ ar{K} & ar{Z} & ar{M} \ ar{M} & ar{K} & ar{Z} \end{bmatrix}$$

Observation: in what follows, we derive the sequence method for the generic case of **circulant symmetric matrices** of network components, so the **latter**.

The procedure for decoupling the link between voltages and currents involves calculating the **eigenvalues and eigenvectors** of the matrix $\lceil \bar{Z}_{abc} \rceil$

$$\begin{vmatrix} \overline{Z} - / & \overline{M} & \overline{M} \\ \overline{M} & \overline{Z} - / & \overline{M} \\ \overline{M} & \overline{M} & \overline{Z} - / \end{vmatrix} = 0$$

Using Sarrus' method, for example, to calculate the determinant of the previous equation, we get the following characteristic polynomial:

$$(\overline{Z} - I)^3 + 2\overline{M}^3 - 3\overline{M}^2(\overline{Z} - I) = 0$$

which has a single root (λ_1) and another double root ($\lambda_{2,3}$):

$$I_{1} = \overline{Z} + 2\overline{M}; I_{2} = I_{3} = \overline{Z} - \overline{M}$$

The **eigenvectors** of the root λ_1 are:

$$\begin{bmatrix} \overline{Z} - (\overline{Z} + 2\overline{M}) & \overline{M} & \overline{M} \\ \overline{M} & \overline{Z} - (\overline{Z} + 2\overline{M}) & \overline{M} \\ \overline{M} & \overline{M} & \overline{Z} - (\overline{Z} + 2\overline{M}) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0$$

Which is equivalent to:

$$\begin{bmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0$$
 Necessary and sufficient $x_1 = x_2 = x_3 = k \in \square$; $\begin{bmatrix} k \\ k \end{bmatrix}$ and sufficient \Rightarrow

The **eigenvectors** of the roots λ_2 and λ_3 are:

$$\begin{bmatrix} \overline{Z} - (\overline{Z} - \overline{M}) & \overline{M} & \overline{M} \\ \overline{M} & \overline{Z} - (\overline{Z} - \overline{M}) & \overline{M} \\ \overline{M} & \overline{M} & \overline{Z} - (\overline{Z} - \overline{M}) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0$$

Which is equivalent to:

In the case of a circulant impedance matrix, we have:

$$\begin{vmatrix} \overline{Z} - / & \overline{M} & \overline{K} \\ \overline{K} & \overline{Z} - / & \overline{M} \\ \overline{M} & \overline{K} & \overline{Z} - / \end{vmatrix} = 0$$

The characteristic polynomial is:

$$(\overline{Z} - I)^3 + \overline{M}^3 + \overline{K}^3 - 3\overline{M}\overline{K}(\overline{Z} - I) = 0$$

The roots are:

$$I_{1} = \overline{Z} + \overline{K} + \overline{M}$$

$$I_{2} = \frac{1}{2} \left(-\sqrt{3} \sqrt{-K_{-}^{2} + 2\overline{K}\overline{M}_{-} M^{2}} - \overline{K} - \overline{M} + 2\overline{Z} \right) = -j \frac{\sqrt{3}}{2} (\overline{K} - \overline{M}) - \overline{K} - \overline{M} + 2\overline{Z}$$

$$I_{3} = \frac{1}{2} \left(\sqrt{3} \sqrt{-K_{-}^{2} + 2\overline{K}\overline{M}_{-} M^{2}} - \overline{K} - \overline{M} + 2\overline{Z} \right) = j \frac{\sqrt{3}}{2} (\overline{K} - \overline{M}) - \overline{K} - \overline{M} + 2\overline{Z}$$

$$I_{3} = \frac{1}{2} \left(\sqrt{3} \sqrt{-K_{-}^{2} + 2\overline{K}\overline{M}_{-} M^{2}} - \overline{K} - \overline{M} + 2\overline{Z} \right) = j \frac{\sqrt{3}}{2} (\overline{K} - \overline{M}) - \overline{K} - \overline{M} + 2\overline{Z}$$

The eigenvectors of the root λ_1 (corresponding to the case of the circulant impedance matrix) are given by:

$$\begin{bmatrix} \overline{Z} - (\overline{Z} + \overline{M} + \overline{K}) & \overline{M} & \overline{K} \\ \overline{K} & \overline{Z} - (\overline{Z} + \overline{M} + \overline{K}) & \overline{M} & \\ \overline{M} & \overline{K} & \overline{Z} - (\overline{Z} + \overline{M} + \overline{K}) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0$$

Sufficient condition to satisfy the above equation:

$$x_1 = x_2 = x_3 = k \in \square; \begin{bmatrix} k \\ k \\ k \end{bmatrix}$$

The eigenvectors of the root λ_2 (corresponding to the case of the circulant impedance matrix) are given by:

$$\bar{Z} - \left(-j\frac{\sqrt{3}}{2}(\bar{K} - \bar{M}) - \bar{K} - \bar{M} + 2\bar{Z}\right) \qquad \bar{M} \qquad \bar{K}$$

$$\bar{K} \qquad \bar{Z} - \left(-j\frac{\sqrt{3}}{2}(\bar{K} - \bar{M}) - \bar{K} - \bar{M} + 2\bar{Z}\right) \qquad \bar{M} \qquad \bar{X} \qquad \bar{Z} - \left(-j\frac{\sqrt{3}}{2}(\bar{K} - \bar{M}) - \bar{K} - \bar{M} + 2\bar{Z}\right)$$

$$\bar{M} \qquad \bar{K} \qquad \bar{Z} - \left(-j\frac{\sqrt{3}}{2}(\bar{K} - \bar{M}) - \bar{K} - \bar{M} + 2\bar{Z}\right)$$

The solution is given by:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \left(\cos\frac{2\rho m}{3} + j\sin\frac{2\rho m}{3}\right)_{m=0} \\ \left(\cos\frac{2\rho m}{3} + j\sin\frac{2\rho m}{3}\right)_{m=2} \\ \left(\cos\frac{2\rho m}{3} + j\sin\frac{2\rho m}{3}\right)_{m=1} \end{bmatrix}$$

Observation: the eigenvectors of a circulant matrix of rank n are composed of the n roots of unity given by the solution of the equation $z^n = 1$ or $z \hat{1} \square$ and $n \hat{1} \square$.

The eigenvectors of the root λ_3 (corresponding to the case of the circulant impedance matrix) are given by:

$$\begin{bmatrix}
\bar{Z} - \left(j\frac{\sqrt{3}}{2}(\bar{K} - \bar{M}) - \bar{K} - \bar{M} + 2\bar{Z}\right) & \bar{M} & \bar{K} \\
\bar{K} & \bar{Z} - \left(j\frac{\sqrt{3}}{2}(\bar{K} - \bar{M}) - \bar{K} - \bar{M} + 2\bar{Z}\right) & \bar{M} \\
\bar{M} & \bar{K} & \bar{Z} - \left(j\frac{\sqrt{3}}{2}(\bar{K} - \bar{M}) - \bar{K} - \bar{M} + 2\bar{Z}\right)
\end{bmatrix} = 0$$

The solution is given by:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \left(\cos\frac{2\rho m}{3} + j\sin\frac{2\rho m}{3}\right)_{m=0} \\ \left(\cos\frac{2\rho m}{3} + j\sin\frac{2\rho m}{3}\right)_{m=1} \\ \left(\cos\frac{2\rho m}{3} + j\sin\frac{2\rho m}{3}\right)_{m=2} \end{bmatrix}$$

Observation: the eigenvectors of a circulant matrix of rank n are composed of the n roots of unity given by the solution of the equation $z^n = 1$ or $z \hat{1} \sqcap \text{ and } n \hat{1} \sqcap$.

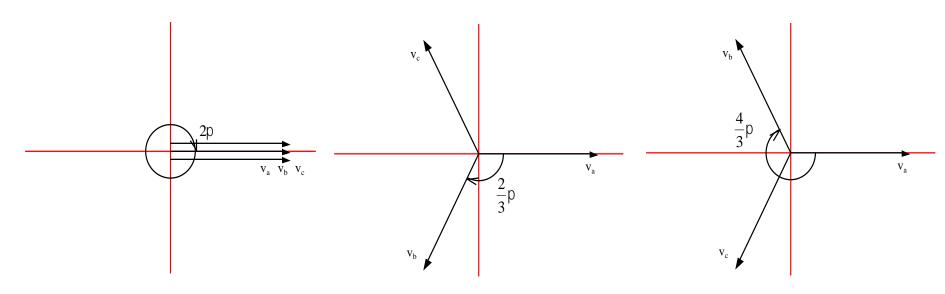
Through the definition of the complex number $a\hat{l} \square$

$$\partial = e^{j\frac{2}{3}\rho} = \cos\left(\frac{2}{3}\rho\right) + j\sin\left(\frac{2}{3}\rho\right)$$

we obtain the common eigenvectors for symmetrical and circulant matrices $\left\lceil \overline{Z}_{abc} \right\rceil$:

$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ a^2 \\ a \end{bmatrix}, \begin{bmatrix} 1 \\ a \\ a^2 \end{bmatrix}$$

The three vectors shown are called sequences



Symmetrical homopolar system(zero sequence or

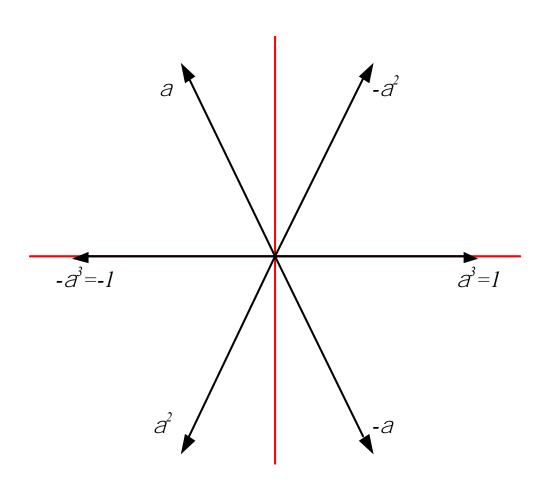
Direct symmetrical system (positive sequence or 1)

Inverse symmetrical (negative sequence or 2)

$$\begin{bmatrix} S^0(\overline{V}_0) \end{bmatrix} = \overline{V}_0 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} S^{0}(\overline{V}_{0}) \end{bmatrix} = \overline{V}_{0} \begin{vmatrix} 1 \\ 1 \\ 1 \end{vmatrix} \qquad \begin{bmatrix} S^{1}(\overline{V}_{d}) \end{bmatrix} = \overline{V}_{d} \begin{vmatrix} 1 \\ a^{2} \\ a \end{vmatrix} \qquad \begin{bmatrix} S^{2}(\overline{V}_{i}) \end{bmatrix} = \overline{V}_{i} \begin{vmatrix} 1 \\ a \\ a^{2} \end{vmatrix}$$

$$[S^{2}(\overline{V}_{i})] = \overline{V}_{i} \begin{vmatrix} 1 \\ a \\ a^{2} \end{vmatrix}$$



The matrix $[T_s]$ with eigenvectors in the columns, i.e. the matrix with sequences $[S^0(1)],[S^1(1)],[S^2(1)]$ in the columns has a **non-zero determinant**. This matrix represents a **change** of basis of the vector space \square^3

$$[T_s] = \begin{bmatrix} 1 & 1 & 1 \\ 1 & a^2 & a \\ 1 & a & a^2 \end{bmatrix}$$

In fact, the vectors $[S^0(1)]$, $[S^1(1)]$, $[S^2(1)]$ are linearly independent and form a **basis** for \square^3 .

Observation: the previous sequence property means that any vector of \square^3 , i.e. any set of three complex numbers representing a three-phase system, can be expressed as a linear combination of the elements of this base by the following equation:

$$\begin{bmatrix} \overline{V}_{a} \\ \overline{V}_{b} \\ \overline{V}_{c} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & a^{2} & a \\ 1 & a & a^{2} \end{bmatrix} \begin{bmatrix} \overline{V}_{0} \\ \overline{V}_{d} \\ \overline{V}_{i} \end{bmatrix} = \begin{bmatrix} T_{s} \end{bmatrix} \begin{bmatrix} \overline{V}_{0} \\ \overline{V}_{d} \\ \overline{V}_{i} \end{bmatrix}$$

Observation: therefore, for a generic element of a three-phase system $\left[\overline{V}_a, \overline{V}_b, \overline{V}_c \right]$, the homopolar, direct and inverse components $\left[\overline{V}_0, \overline{V}_d, \overline{V}_i \right]$ can be determined by:

$$\begin{bmatrix} \overline{V}_0 \\ \overline{V}_d \\ \overline{V}_i \end{bmatrix} = \begin{bmatrix} T_s \end{bmatrix}^{-1} \begin{bmatrix} \overline{V}_a \\ \overline{V}_b \\ \overline{V}_c \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & a & a^2 \\ 1 & a^2 & a \end{bmatrix} \begin{bmatrix} \overline{V}_a \\ \overline{V}_b \\ \overline{V}_c \end{bmatrix}$$

Now we can write the equation in $\begin{vmatrix} \bar{E}_a \\ \bar{E}_b \end{vmatrix} = \begin{vmatrix} \bar{Z}_{aa} & \bar{Z}_{ab} & \bar{Z}_{ac} \\ \bar{Z}_{ba} & \bar{Z}_{bb} & \bar{Z}_{bc} \\ \bar{Z}_{ca} & \bar{Z}_{cb} & \bar{Z}_{cc} \end{vmatrix} = \bar{I}_a$ compact form

$$\left[\overline{E}_{abc} \right] = \left[\overline{Z}_{abc} \right] \left[\overline{I}_{abc} \right]$$

and the triplet of voltages and currents can be **decomposed** by the matrix $[T_s]$, resulting in:

$$\begin{bmatrix} T_s \end{bmatrix} \begin{bmatrix} \overline{E}_{0di} \end{bmatrix} = \begin{bmatrix} \overline{Z}_{abc} \end{bmatrix} \begin{bmatrix} T_s \end{bmatrix} \begin{bmatrix} \overline{I}_{0di} \end{bmatrix}$$

$$\begin{bmatrix} \overline{E}_{0di} \end{bmatrix} = \begin{bmatrix} T_s \end{bmatrix}^{-1} \begin{bmatrix} \overline{Z}_{abc} \end{bmatrix} \begin{bmatrix} T_s \end{bmatrix} \begin{bmatrix} \overline{I}_{0di} \end{bmatrix}$$

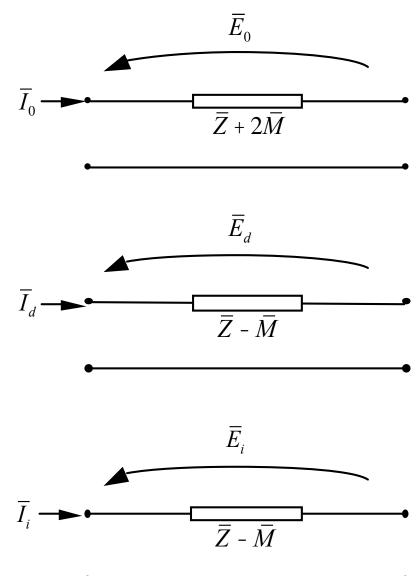
If we consider that $[T_s]^{-1}[\bar{Z}_{abc}][T_s]$ gives rise to a diagonal matrix whose **diagonal terms are the eigenvalues** of $[\bar{Z}_{abc}]$, we obtain for the first type of matrix:

$$\begin{bmatrix} \overline{E}_0 \\ \overline{E}_d \\ \overline{E}_i \end{bmatrix} = \begin{bmatrix} \overline{Z} + 2\overline{M} & 0 & 0 \\ 0 & \overline{Z} - \overline{M} & 0 \\ 0 & 0 & \overline{Z} - \overline{M} \end{bmatrix} \begin{bmatrix} \overline{I}_0 \\ \overline{I}_d \\ \overline{I}_i \end{bmatrix}$$

Therefore, the generic network element supplied by a generic voltage system (asymmetrical and unbalanced) and a generic current system (also asymmetrical and unbalanced), can be decomposed into three three-phase circuits where they act only in the homopolar, direct and reverse sequence.

Each three-phase circuit can be represented by an equivalent single-phase circuit as shown in the figure.

The circuits in the figure are not coupled → there is no electrical connection between the sequence circuits, so they can be solved separately.



Outline

Transformation of a three-phase system with symmetrical components

Considerations for Grounding

Decoupling of an asymmetrical three-phase impedance system

Apparent power invariance property

Considerations for Grounding

The sequence voltages and currents of a three-phase system can be used to **make observations** about the **grounding** characteristics of the system.

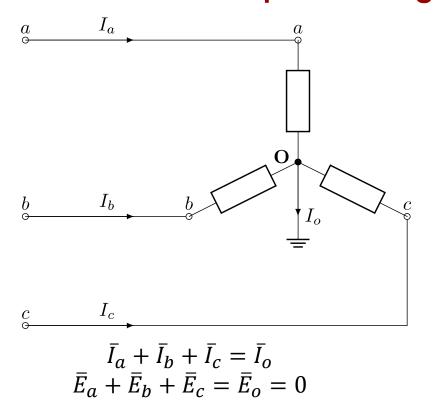
Definition: grounded system – a system in which the point at the center of the phase-to-ground voltages is connected to earth via a low or zero impedance.

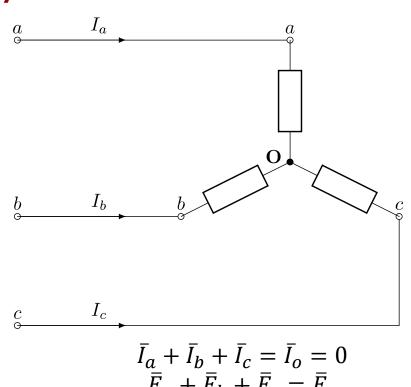
If the impedance of the grounding system is zero (ideal grounding), the homopolar (zero sequence) voltage is equal to zero and the homopolar current may be non-zero.

If the system is ungrounded, the homopolar current is equal to zero and the homopolar voltage may be non-zero.

Considerations for Grounding

If the impedance of the grounding system is zero (ideal grounding), the homopolar (zero sequence) voltage is equal to zero and the homopolar current may be non-zero. If the system is ungrounded, the homopolar current is equal to zero and the homopolar voltage may be non-zero.





Outline

Transformation of a three-phase system with symmetrical components

Considerations for Grounding

Decoupling of an asymmetrical three-phase impedance system

Apparent power invariance property

Decoupling of an asymmetrical threephase impedance system (asymmetrical line)

We examine the case of a line whose impedance matrix does not have a circulant structure. We study a simple case, where the line can be represented only by three different longitudinal impedances:

$$\overline{Z}_{aa}$$
 ¹ \overline{Z}_{bb} ¹ \overline{Z}_{cc}
 $\overline{Z}_{ab} = \overline{Z}_{ac} = \overline{Z}_{bc} = \overline{Z}_{ba} = \overline{Z}_{ca} = \overline{Z}_{cb} = 0$

Donc

$$\begin{bmatrix} \overline{Z}_{abc} \end{bmatrix} = \begin{bmatrix} \overline{Z}_{aa} & 0 & 0 \\ 0 & \overline{Z}_{bb} & 0 \\ 0 & 0 & \overline{Z}_{cc} \end{bmatrix}$$

Decoupling of an asymmetrical threephase impedance system (asymmetrical line)

If the matrix $[T_s]$ is also the matrix of eigenvectors of $\left[\overline{Z}_{abc}\right]$ with the result $\left[T_s\right]^{-1}\left[\overline{Z}_{abc}\right]\left[T_s\right]$ we should get a diagonal matrix, and instead we get:

$$\begin{bmatrix} T_{s} \end{bmatrix}^{-1} \begin{bmatrix} \overline{Z}_{abc} \end{bmatrix} \begin{bmatrix} T_{s} \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & a & a^{2} \\ 1 & a^{2} & a \end{bmatrix} \begin{bmatrix} \overline{Z}_{aa} & 0 & 0 \\ 0 & \overline{Z}_{bb} & 0 \\ 0 & 0 & \overline{Z}_{cc} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & a^{2} & a \\ 1 & a & a^{2} \end{bmatrix} = \begin{bmatrix} \overline{Z}_{aa} + \overline{Z}_{bb} + \overline{Z}_{cc} & \overline{Z}_{aa} + a\overline{Z}_{bb} + a\overline{Z}_{cc} & \overline{Z}_{aa} + a\overline{Z}_{bb} + a\overline{Z}_{cc} \end{bmatrix}$$

$$=\frac{1}{3}\begin{bmatrix} \overline{Z}_{aa} + \overline{Z}_{bb} + \overline{Z}_{cc} & \overline{Z}_{aa} + a^2 \overline{Z}_{bb} + a \overline{Z}_{cc} & \overline{Z}_{aa} + a \overline{Z}_{bb} + a \overline{Z}_{cc} \\ \overline{Z}_{aa} + a \overline{Z}_{bb} + a \overline{Z}_{cc} & \overline{Z}_{aa} + \overline{Z}_{bb} + \overline{Z}_{cc} & \overline{Z}_{aa} + a^2 \overline{Z}_{bb} + a \overline{Z}_{cc} \\ \overline{Z}_{aa} + a^2 \overline{Z}_{bb} + a \overline{Z}_{cc} & \overline{Z}_{aa} + a \overline{Z}_{bb} + a \overline{Z}_{cc} & \overline{Z}_{aa} + \overline{Z}_{bb} + \overline{Z}_{cc} \end{bmatrix}$$

Outline

Transformation of a three-phase system with symmetrical components

Considerations for Grounding

Decoupling of an asymmetrical three-phase impedance system

Apparent power invariance property

Apparent power invariance property

When using the sequence decomposition of a three-phase electrical system, the **invariance of the complex power** must be taken into account, given the equivalence demonstrated below between the original three-phase circuit and the sequence circuits.

This property is easily demonstrated by considering the expression of the apparent power of a three-phase circuit fed by three simple voltages $\overline{E}_a, \overline{E}_b, \overline{E}_c$, which absorb three line currents $\overline{I}_a, \overline{I}_b, \overline{I}_c$

$$\overline{S} = \overline{E}_a \overline{I}_a^* + \overline{E}_b \overline{I}_b^* + \overline{E}_c \overline{I}_c^*$$

This equation can be written as the scalar product of the following vectors:

$$\overline{S} = \left[\overline{E}_{abc}\right]^{t} \cdot \left[\overline{I}_{abc}^{*}\right] = \left[\left[T_{s}\right]\left[\overline{E}_{0di}\right]\right]^{t} \cdot \left[T_{s}^{*}\right]\left[\overline{I}_{0di}^{*}\right] = \left[\overline{E}_{0di}\right]^{t} \left[T_{s}\right]^{t} \cdot \left[T_{s}^{*}\right]\left[\overline{I}_{0di}^{*}\right]$$

Apparent power invariance property

The product $\left[T_{s}\right]^{t}\cdot\left[T_{s}^{*}\right]$ is equal to

$$\begin{bmatrix} T_s \end{bmatrix}^t \begin{bmatrix} T_s^* \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & a^2 & a \\ 1 & a & a^2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & a & a^2 \\ 1 & a^2 & a \end{bmatrix} = 3 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Therefore:

$$\overline{S} = \left[\overline{E}_{0di}\right]^t \left[T_s\right]^t \cdot \left[T_s^*\right] \left[\overline{I}_{0di}^*\right] = 3\overline{E}_0 \overline{I}_0^* + 3\overline{E}_d \overline{I}_d^* + 3\overline{E}_i \overline{I}_i^*$$

Since the three sequence circuits 0,d,i, are symmetrical, their apparent powers can be written as:

$$\overline{S}_0 = 3\overline{V}_0\overline{I}_0^*$$
 $\overline{S}_d = 3\overline{V}_d\overline{I}_d^*$ $\overline{S}_i = 3\overline{V}_i\overline{I}_i^*$

Therefore, we have **energetic equivalence of the three- phase circuit and its composing sequence circuits.**